Abstract

A plane-parallel approximation using fascode to calculate upward and downward IR flux density and angle-averaged radiance is described and tested against results that account for planetary curvature. The method is further developed to calculate the excitation of NO(v = 1) due to absorption of upwelling radiation in the earth’s atmosphere. The algorithm is applied to a standard set of atmospheric models, in addition to typical and extreme desert atmospheric models which are included to maximize the effect. The results of this work show that upwelling radiation typically contributes <2.5% to the total NO(v = 1) excitation in the midstratosphere rises to ~5% at 50 km and becomes increasingly significant at higher altitudes. It is shown that in the mesosphere excitation due to upwelling and solar radiation become important compared to the dominant processes, thermal collisions, and chemical excitation. An approximate technique utilizing meteorological data, namely, tropospheric temperature, pressure, and humidity profiles, is developed to estimate the excitation of NO(v = 1) in the middle atmosphere. This technique would facilitate the retrieval of the NO mixing ratio from earthlimb emission data, as might be obtained from a satellite-borne limb sounding experiment, since it could be used to approximate the contribution of upwelling radiation to the NO(v = 1) non-LTE vibrational temperature efficiently.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Degree of radiance and polarization of the upwelling radiation from an atmosphere–ocean system

Tsutomu Takashima and Kazuhiko Masuda
Appl. Opt. 24(15) 2423-2429 (1985)

Ocean–atmosphere interface: its influence on radiation

Gilbert N. Plass, Terry J. Humphreys, and George W. Kattawar
Appl. Opt. 20(6) 917-931 (1981)

Reevaluation of the quondam dust trend in the middle atmosphere

Miroslav Kocifaj and Helmuth Horvath
Appl. Opt. 44(34) 7378-7393 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription