Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical scattering and absorption by branched chains of aerosols

Not Accessible

Your library or personal account may give you access

Abstract

We utilize the Volume Integral Equation Formulation (VIEF) and the method of moments to calculate the electromagnetic scattering and absorption of aerosol particles with branched-chain structures. Two kinds of polarization of the incident electromagnetic wave were considered: the cross- and end-fire polarizations. The numerical results of internal electric field distribution, absorbed power, and extinction and scattering cross sections, obtained from the VIEF, show excellent agreement with the Mie theory for the special case of spherical particles. Comparison between the results of the VIEF and Iterative Extended Boundary Condition Method for very long oriented (elongated) chains of particles also showed good agreement. After validating the accuracy of the VIEF, the absorption characteristics of three branched-chain structures simulated from microscopic pictures of coagulated smoke aerosol particles were calculated. Results showed that the ratio of absorption in the two polarization cases, Pcross-fire/Pend-fire, for very long oriented chain structures is as high as a factor of 4 at lower frequencies (λ = 10 μm). While in the higher frequency (λ = 0.5-μm) case, the ratio of Pcross-fire/Pend-fire is reduced to 2.0. For branched-chain structures, the ratio of Pcross-fire/Pend-fire decreased with the increase in the number of the side branches. These observations show that the frequency, polarization, and structure factors play important roles in determining the optical characteristics of branched chains of aerosol particles.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Empirical formula for optical absorption by fractal aerosol agglomerates

H. Y. Chen, Magdy F. Iskander, and J. E. Penner
Appl. Opt. 30(12) 1547-1551 (1991)

Optical scattering by metallic and carbon aerosols of high aspect ratio

Magdy F. Iskander, Steven C. Olson, Robert E. Benner, and Dawn Yoshida
Appl. Opt. 25(15) 2514-2520 (1986)

Scattering and absorption by thin flat aerosols

Herschel Weil and C. M. Chu
Appl. Opt. 19(12) 2066-2071 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (10)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.