Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pulsed photothermal radiometry in turbid media: internal reflection of backscattered radiation strongly influences optical dosimetry

Not Accessible

Your library or personal account may give you access

Abstract

The integrated irradiance (energy fluence rate) within tissue can exceed the incident irradiance due to backscattered and multiply reflected light near the sample surface. This was studied quantitatively using pulsed photothermal radiometry, which measures blackbody radiation emitted by a sample during and after absorption of an optical pulse. Aqueous gels containing absorbing dye with or without various scattering materials were studied using a fast sensitive IR detector system and 1-μs tunable pulsed dye laser. For nonscattering samples, the temperature transient (T-jump) due to absorption of a laser pulse was consistent with Beer’s law for homogeneous absorbing media. When scattering was present, increases of up to almost an order of magnitude in the T-jump were observed. For a given absorption coefficient, there was a proportional relationship between the increase in the T-jump and the sample’s diffuse reflectance. A model describing the reflectance of diffuse radiation at the sample boundary was derived to explain this result. To test the model, the refractive index was varied with air as the external medium and was also matched to that of BaF2 as the externalmedium. The subsurface fluence is, to a reasonable approximation, given by EE0(1 + 2bR), where E0 is the incident fluence of an infinitely wide collimated beam, b is a coefficient strongly dependent on only the refractive index, and R is the measured diffuse reflectance of the sample. This study shows that irradiance within tissues can greatly exceed the irradiance of incident collimated light, an effect that should be accounted for in photomedical dosimetry or research.

© 1989 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue

I. Alex Vitkin, Brian C. Wilson, and R. Rox Anderson
Appl. Opt. 34(16) 2973-2982 (1995)

Pulsed photothermal radiometry of port-wine-stain lesions

Steven L. Jacques, J. Stuart Nelson, William H. Wright, and Thomas E. Milner
Appl. Opt. 32(13) 2439-2446 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved