Abstract

A simple method is given for computing the relative errors in H2O vapor and T (temperature) profiles measured by a ground-based differential lidar system: The analysis is based on a simplified model of the earth's atmosphere, which allows one to write exact mathematical expressions for the lidar return signals which can be evaluated in closed form. Error computations can be made from these expressions with a small pocket calculator to an accuracy of a few percent. Error estimates are given for a lidar system used to measure H2O and T profiles from the ground up to a 5-km altitude. The results are given for an ideal system with no instrument noise and for a system using quantum detectors with detector-amplifier noise and less than unity quantum efficiency. The relative merits of the photomultiplier tube and silicon diode as detectors are also assessed using this technique of error analysis. Regions of useful operation for these detectors are defined in terms of the signal energy of the lidar return and the noise equivalent power of the detector.

© 1985 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

Noah S. Higdon, Edward V. Browell, Patrick Ponsardin, Benoist E. Grossmann, Carolyn F. Butler, Thomas H. Chyba, M. Neale Mayo, Robert J. Allen, Alene W. Heuser, William B. Grant, Syed Ismail, Shane D. Mayor, and Arlen F. Carter
Appl. Opt. 33(27) 6422-6438 (1994)

Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis

Syed Ismail and Edward V. Browell
Appl. Opt. 28(17) 3603-3615 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (95)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription