Abstract

An optical system employing a tunable carbon dioxide laser has been used to investigate backscatter signatures of aerosols as a function of wavelength. Submicron sulfuric acid or ammonium sulfate aerosols are produced with a vapor-condensation aerosol generator. The aerosol is contained in a 1-m long windowless aerosol chamber, and laser radiation backscattered from the irradiated aerosol is collected and measured as the laser is tuned from 9.2 to 10.8 μm. The volume backscatter coefficient is calculated from the lidar equation to yield the theoretical IR spectrum of the aerosol. The measured spectral signature is compared with the theoretical signature, which is computed from Mie theory. Backscatter signatures show excellent agreement with calculated signatures. The spectral signature of ammonium sulfate is readily distinguished from that of sulfuric acid for the conditions of the experiment. Because of vapor pressure characteristics of sulfuric acid, it is possible to concentrate the acid in the generator over time and look for a change in the acid concentration in the aerosol. Not only has this concentration process been observed optically, but under these experimental conditions the acid concentration in the aerosol can be determined by observing backscatter at just two wavelengths.

© 1982 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Backscatter laser depolarization studies of simulated stratospheric aerosols: crystallized sulfuric acid droplets

Kenneth Sassen, Hongjie Zhao, and Bing-Kun Yu
Appl. Opt. 28(15) 3024-3029 (1989)

Carbon dioxide laser backscatter signatures from laboratory-generated dust

Diane Powell Walter, David E. Cooper, Jan E. van der Laan, and Edward R. Murray
Appl. Opt. 25(15) 2506-2513 (1986)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription