Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analytical model for low-pressure gas discharges: application to the Hg + Ar discharge

Not Accessible

Your library or personal account may give you access

Abstract

A general technique for analyzing complicated gas discharges has been developed and applied to the Hg + Ar (fluorescent lamp) discharge. The theoretical model includes electron excitation and deexcitation, two-state ionization through a saturated metastable level, and proper treatment of the self-absorption of the resonance radiation. The analysis yields simple analytic expressions for the electron temperature, the resonance radiation, and the electric field. When applied to Hg + Ar discharges, these analytic expressions yield good quantitative agreement with the available absolute data on the dependence of the electron temperature, the Hg 2537-Å radiation, and the electric field on mercury pressure and current.

© 1982 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved