Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

Not Accessible

Your library or personal account may give you access

Abstract

Reported here for the first time is the use of simultaneous airborne laser-induced dye fluorescence and the 3400-cm−1 OH-stretch water Raman backscatter spectra to yield the absolute concentration of an ocean-dispersed tracer dye. Using a straightforward theoretical model, the concentration is calculated by numerically comparing the airborne laser-induced fluorescence and Raman backscatter spectra to similar laboratory data for a known dye concentration measured under comparable environmental and instrumental conditions. The dye is assumed to be uniformly mixed throughout the water column together with other interfering, fluorescent, organic matter. A minimum detectable integrated water column dye concentration of ~2 ppb by weight as limited by background and instrument noise is obtained. A dye concentration contour map produced from the conical scan lidar data is given.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Oil film thickness measurement using airborne laser-induced water Raman backscatter

F. E. Hoge and R. N. Swift
Appl. Opt. 19(19) 3269-3281 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.