Abstract

A multimode fiber-optic hydrophone is described which is based upon a schlieren acoustooptic intensity modulation mechanism. Computer modeling of critical device parameters was experimentally verified and used to indicate ultimate attainable device performance. The device was shown to be able to detect the Knudsen noise level for frequencies up to 1 kHz, to have a dynamic range of 125 dB, to have an omnidirectional receiving response, and to be able to detect displacements as small as 3.4 × 10−3 Å. The device is not susceptible to phase noise, is relatively insensitive to static pressure head variations and is electrically passive.

© 1981 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frustrated-total-internal-reflection multimode fiber-optic hydrophone

W. B. Spillman and D. H. McMahon
Appl. Opt. 19(1) 113-117 (1980)

Multimode fiber-optic hydrophone based on the photoelastic effect

W. B. Spillman and D. H. McMahon
Appl. Opt. 21(19) 3511-3514 (1982)

Fiber microbend acoustic sensor

J. N. Fields and J. H. Cole
Appl. Opt. 19(19) 3265_1-3267 (1980)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription