Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Photofragmentation-laser induced fluorescence: a new method for detecting atmospheric trace gases

Not Accessible

Your library or personal account may give you access

Abstract

A new method for the in situ detection of nonfluorescing molecular species is proposed: photofragmentation-laser induced fluorescence (PF-LIF). In this approach, the species to be detected is first laser photolyzed at a wavelength λ1, producing one or more vibrationally excited photofragments. Before vibrational relaxation occurs, one of these photofragments is pumped into a bonding excited state by a second laser pulse centered at wavelength λ2. Fluorescence is sampled at a wavelength λ3, where λ3 < λ2 and λ1. This pumping configuration thus permits massive discrimination against Rayleigh and Raman scattering as well as white noise fluorescence from the laser wavelengths λ1 and λ2. The technique should be both highly sensitive and selective for numerous atmospheric trace gases. Specific sampling schemes for detecting NO2, NO3, and HNO2 are proposed. Various noise sources and chemical interferences are discussed. Specific calculations that estimate the sensitivity of the PF-LIF system for detecting NO2, NO3, and HNO2 are given.

© 1980 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser photofragmentation–fragment detection and pyrolysis–laser-induced fluorescence studies on energetic materials

Vaidhianat Swayambunathan, Gurbax Singh, and Rosario C. Sausa
Appl. Opt. 38(30) 6447-6454 (1999)

Sequential two-photon laser-induced fluorescence: a new technique for detecting hydroxyl radicals

J. D. Bradshaw, M. O. Rodgers, and Douglas D. Davis
Appl. Opt. 23(13) 2134-2145 (1984)

Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser

Fumikazu Taketani, Megumi Kawai, Kenshi Takahashi, and Yutaka Matsumi
Appl. Opt. 46(6) 907-915 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.