Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Signal distortion due to beam-pointing error in a chopper modulated laser system

Not Accessible

Your library or personal account may give you access

Abstract

The detector output has been studied for a long-distance system with a chopped cw laser as transmitter source. It is shown experimentally that the pulse distortion of the detected signal is dependent on the beam-pointing error. Parameters reflecting the pulse distortion are defined. The beam deviation in 1-D is found to be strongly related to these parameters. The result is in agreement with a theoretical model based upon the Fresnel diffraction theory. Possible applications in beam-tracking systems, communications systems, and atmospheric studies are discussed.

© 1978 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser beam reading of video records

C. H. F. Velzel
Appl. Opt. 17(13) 2029-2036 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.