Abstract
The errors introduced in Δ∊2 spectra by Kramers-Krönig analysis of modulated reflectivity data are investigated using an analytical model. It is found that the energy position of singularities is always reproduced with good accuracy even if the experimental spectrum of ΔR/R is cut barely above the last structure of interest. This procedure is instead completely insufficient when a quantitative line shape analysis is required. In such cases data up to very high energy are required for a meaningful analysis. Errors due to other sources, like baseline shifts or inaccurate static optical constants, are also investigated.
© 1975 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (7)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription