Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of Aerosol Variation on Radiance in the Earth’s Atmosphere–Ocean System

Not Accessible

Your library or personal account may give you access

Abstract

The reflected and transmitted radiance is calculated for a realistic model of the atmosphere–ocean system. Multiple scattering to all orders as well as anisotropic scattering from aerosols are taken into account by a Monte Carlo technique. The probability for reflection or refraction at the ocean surface is calculated for each photon. Scattering and absorption by water molecules (Rayleigh) and by hydrosols (Mie) are taken into account within the ocean. The radiance is calculated for a normal aerosol distribution as well as for a three and ten times normal distribution. Calculations are also made for an aerosol layer near the earth as well as for one in the stratosphere. The upward radiance at the top of the atmosphere depends strongly on the total number of aerosols but not on their spatial distribution. Variations in the ozone amount also have little effect on the upward radiance. The calculations are made at the following wavelengths: 0.7 μ, 0.9 μ, 1.67 μ. The radiance above and below the ocean surface as well as the flux at various levels are also discussed.

© 1972 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves

Gilbert N. Plass, George W. Kattawar, and John A. Guinn
Appl. Opt. 14(8) 1924-1936 (1975)

Radiative Transfer in an Atmosphere–Ocean System

Gilbert N. Plass and George W. Kattawar
Appl. Opt. 8(2) 455-466 (1969)

Calculations of Reflected and Transmitted Radiance for Earth’s Atmosphere

Gilbert N. Plass and George W. Kattawar
Appl. Opt. 7(6) 1129-1135 (1968)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.