The optical properties of biological tissues are of significant clinical interest. Such media are highly scattering to the near-infrared light which offers the required contrast, and consequently purely optical approaches to imaging tissues at depth suffer from limited spatial resolution. Acousto-optic imaging is a multi-modal technique which overcomes this problem by combining the the optical contrast of near infra-red light with the spatial resolution of ultrasound, permitting millimetre resolution at depths of several centimetres. Raw measurements made using the acousto-optic technique are corrupted by the varying optical fluence in the medium. In this work we demonstrate a method to overcome this limitation by applying a numerical reconstruction algorithm to data collected using an acousto-optic imaging system: this represents a first step towards fully quantitative imaging.

© 2016 Optical Society of America

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription