Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser printing and immobilization of biomolecules for optical sensors applications

Not Accessible

Your library or personal account may give you access

Abstract

In the past years, the use of laser based techniques for printing biomolecules has received significant attention as efficient techniques for direct and controllable bio-modification of solid surfaces and sensing applications. Update, laser printing has been applied for the fabrication of several types of biosensors with high spatial resolution including photosynthetic, enzymatic, and DNAzyme biosensors, targeting the detection of hazardous contaminants in food products and water. In this work, we present, a novel approach combining the Laser Induced Forward Transfer (LIFT) technique with novel laser photoinduced reactions from the area of ‘click chemistry’, for the creation of micropatterns of aptamers, specifically designed to bind the mycotoxin Ochratoxin A (OTA), on silicon nitride surfaces. In specific, it is shown that the LIFT technique may be used as direct technique for printing and photoactivating, in a single step process, thiol-modified aptamers, onto alkene- and alkyne-terminated surfaces. Light-mediated thiol-ene (or -yne) reactions effectively combine the classical benefits of click reactions with the advantages of a photo-initiated process, which can be activated at specific times and locations. In combination with the unique properties of the direct laser printing technique LIFT, this approach results in a powerful method for site-specific covalent immobilization of biomaterials onto sensor surfaces.

© 2017 Optical Society of America

PDF Article
More Like This
Laser immobilization of photosynthetic material on Screen Printed Electrodes

Christos Boutopoulos, Eleftherios Touloupakis, Ittalo Pezzotti, Maria Teresa Giardi, and Ioanna Zergioti
CWE4 CLEO: Science and Innovations (CLEO:S&I) 2011

Laser printing of functional materials

Pere Serra
STh1J.1 CLEO: Science and Innovations (CLEO:S&I) 2017

Immobilization of cholesterol oxidase on SiO2 nanoparticles and its application in Fiber optic cholesterol sensor

Mengshi Li, Jun Huang, Peipei Zhang, Pengfei Zhang, and Liyun Ding
W4A.33 Asia-Pacific Optical Sensors Conference (APOS) 2016

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved