We propose a simple optical technique to measure time-resolved nanoscale surface profile of an evaporating sessile fluid droplet. By analyzing Newton ring like high contrast fringes we demonstrated 𝜆/100≈5 nm sensitivity in surface height change of the air-water interface. This allowed us to precisely measure transient surface dynamics during the contact-line slips, weak perturbations on the evaporation due to external magnetic field and partial confinement of the drop. Further, we demonstrate wide applicability of this technique by measuring the nanoscale surface dynamics of the water drop resting on a deformable oil interface.

© 2014 Optical Society of America

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription