Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Integrated optical sensor based on refractive index gratings in photorefractive LiNbO3:Ti:Fe channel waveguides

Not Accessible

Your library or personal account may give you access

Abstract

We present the results of simulations of an integrated optical sensor that uses two narrow-bandwidth interference filters in a single-mode LiNbO3:Ti:Fe channel waveguide operating in the near infrared wavelength region around λ = 1.55 μm. The interference or Bragg filters consist of thermally fixed gratings recorded with green light = 532 nm) in transmission geometry. With these Bragg gratings a Fabry-Perot- resonator is formed. The evanescent field of the guided mode senses changes in the refractive index of the layer covering the waveguide. The resulting changes of the effective refractive index of the mode alter the resonance condition of the resonator. These phase changes can be compensated by using the electro-optic effect and applying an electric field to the waveguide, thus this electric field acts as a sensor signal. Covering the waveguide with a thin layer of a material with high refractive index (e.g. TiO2) leads to an increase of the evanescent field and therefore to a higher sensitivity. In combination with an additional functional layer that is sensitive only to, e.g., specific molecules, a highly efficient sensor with a resolution in the ppb range may be realized.

© 2005 Optical Society of America

PDF Article
More Like This
Holographic reflection filters in photorefractive LiNbO3 channel waveguides for applications as add/drop multiplexers

D. Runde, S. Breuer, and D. Kip
772 Photorefractive Effects, Materials, and Devices (PR) 2005

Integrated Wavelength Filters for IR-light utilizing LiNbO3:Ti Channel Waveguides

J. Hukriede, D. Kip, and E. Krätzig
AD11 Advances in Photorefractive Materials, Effects and Devices (PR) 1999

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.