Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Designing a Broad-Area Optically-Pumped Holographic Vertical Cavity Surface Emitting Laser (HVCSEL)

Not Accessible

Your library or personal account may give you access

Abstract

The basis for the HVCSEL structures that are considered consist of a 1 |Ltm GaAs active layer sandwiched between two Bragg stacks. The linear, nonlinear, and holographic properties of the HVCSEL were calculated using the transfer matrix approach. For holographic films to operate as wide-area devices, the readable bandwidth of the hologram must be as large as possible. This reduces the dependence on laser tuning requirements and helps in overcoming spatially varying shifts in the cavity resonance position caused by thickness variations in the thin film. Designing the structure with low mirror reflectances (sqrt(R1R2) = 95%) gives a cavity resonance bandwidth of nearly 2 nm which is sufficiently broad to allow hologram readout over an area of several square millimeters. The material properties were fixed and the optical properties were then calculated for several structures with different Bragg stack stoichiometry and the best design was obtained.

© 2001 Optical Society of America

PDF Article
More Like This
Degenerate Four-Wave Mixing in an Optically-Pumped Holographic Vertical Cavity Surface Emitting Laser (HVCSEL)

S. Balasubramanian, M. R. Melloch, and D. D. Nolte
CWA26 Conference on Lasers and Electro-Optics (CLEO:S&I) 2003

Spatial structure of broad-area vertical-cavity surface-emitting lasers

T. Ackemann, J.R. Tredicce, R. Jäger, and K.J. Ebeling
QThI3 Quantum Electronics and Laser Science Conference (CLEO:FS) 1999

Holographic vertical-cavity surface-emitting laser

K.M. Kwolek, D.D. Nolte, C. Lenox, and B. Streetman
CFI2 Conference on Lasers and Electro-Optics (CLEO:S&I) 1999

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved