Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical Nanomanipulation Using Nanoshaped Plasmonic Fields

Not Accessible

Your library or personal account may give you access

Abstract

Plasmonic trapping has attracted significant attention because of its applicability to nanoparticle manipulations such as single-molecule trapping and quantum-dot sorting. In this presentation, we report super-resolution trapping where nanoparticles are optically manipulated in nanoscale space smaller than the diffraction limit [1]. We performed two-dimensional mapping of optical trapping potentials experienced by a 100-nm dielectric particle above a plasmon resonant gold nanoblock pair with a gap of several nanometers. The experimental results demonstrated that the potentials have nanometer-sized spatial structures that reflect the near-field landscape of the nanoblock pair. When an incident polarization parallel to the pair axis is rotated by 90°, a single potential well turns into multiple potential wells separated by a distance of approximately 230 nm (<λ/2). We show that the trap stiffness can be enhanced by approximately 3 orders of magnitude compared to that with conventional far-field trapping. In addition, we propose new concept for controlling spatial profiles of gap-mode localized plasmonic fields toward the flexible nanomanipulation. We theoretically and experimentally show that the field distributions within hot spots are formed by constructive and destructive interferences of dipolar, quadrupolar, and higher-order multipolar plasmonic modes, which can be drastically altered by adjusting parameters of the excitation optical system [2-4]. Optical switching of hot spots separated by an 80-nm distance is also demonstrated using a double-nanogap plasmonic structure.

© 2014 Japan Society of Applied Physics, Optical Society of America

PDF Article
More Like This
Nanomanipulation Using Near Field Photonics

David Erickson
OTMA1 Optical Trapping Applications (OMA) 2011

Plasmonic nano-optical conveyer using C-shaped engravings

Yuxin Zheng, Jason Ryan, and Paul Hansen
STh4H.6 CLEO: Science and Innovations (CLEO:S&I) 2014

Multipolar Raman and chiral plasmon on gold nano-dumbbell

Mayukh Banik, Eero Hulkko, Shirshendu Dey, Kate Rodriguez, and V Ara Apkarian
M2D.5 International Conference on Fibre Optics and Photonics (Photonics) 2014

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.