Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Short-Pulse Fiber Lasers Based on Dissipative Solitons

Not Accessible

Your library or personal account may give you access

Abstract

Virtually all practical femtosecond-pulse generation has been based on soliton formation, which is the compensation of a self-focusing nonlinear phase by anomalous dispersion. Although it has many advantageous properties, soliton-like pulse-shaping also limits the stable pulse energy, and this limit is severe in fiber lasers. Recent research has shown that it is possible to generate ultrashort pulses by a completely different mechanism: in a cavity with only normal-dispersion components, a stable highly-chirped pulse can be produced by the balance of spectral broadening and spectral filtering. Such a pulse balances amplitude modulations (gain and loss) as well as the phase modulations, and is referred to as a dissipative soliton. The pulse can be dechirped to the Fourier transform limit outside the cavity. This approach allows the generation of ultrashort pulses from fiber lasers with much higher energies than was possible previously. In particular, lasers based on ordinary single-mode fiber generate 100-fs and 30-nJ pulses, for average powers well above 1 W. These are the first fiber lasers to compete directly with the performance of solid-state lasers. Elimination of segments or components with anomalous dispersion produces simple and practical designs. Dissipative-soliton lasers can also be designed to generate high-energy pulses chirped to ~1000 times the transform-limited duration, which should be valuable for chirped-pulse amplifiers. In addition to their potential for applications, normal-dispersion lasers provide a convenient setting for the study of dissipative solitons, which are of much current interest in the nonlinear-waves community. Theoretical and experimental results will be reviewed.

© 2010 Optical Society of America

PDF Article
More Like This
High-Energy Femtosecond Fiber Lasers Based on Dissipative Solitons

F. W. Wise
CThA1 Conference on Lasers and Electro-Optics (CLEO:S&I) 2010

Photonic crystal fiber based dissipative soliton laser for multi-Watt femtosecond mode-locking

Simon Lefrançois, Khanh Kieu, Frank W. Wise, Yujun Deng, and James D. Kafka
CFK4 Conference on Lasers and Electro-Optics (CLEO:S&I) 2010

Dissipative solitons in an all-normal erbium fiber laser

Nikolai B. Chichkov, Katharina Hausmann, Dieter Wandt, Uwe Morgner, Jörg Neumann, and Dietmar Kracht
NTuA2 Nonlinear Photonics (NP) 2010

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved