Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • CLEO/Europe and EQEC 2009 Conference Digest
  • (Optica Publishing Group, 2009),
  • paper ED3_2

Preparation of a three-photon W state from two EPR photon pairs by LOCC

Not Accessible

Your library or personal account may give you access

Abstract

In quantum information science, it is often the question what distantly located parties sharing EPR pairs can achieve if they are restricted to only local operations and classical communication (LOCC). State preparation and transfonnation is one of such tasks, which have been attracted considerable interest since the early years of the field. It is well-known that starting with EPR pairs, any two-qubit pure state can be prepared via only LOCC. Thus EPR pairs fonn a universal resource. However, the situation is very different when the multipartite entanglement is considered, because in multipartite entanglement, there are distinct classes of entanglement, which cannot be converted into each other with unit fidelity even under stochastic local operation and classical communication (SLOCC), e.g., two distinct classes of states, GHZ-type and W-type states for the tripartite cases [1], There exists no tripartite state that can be used as a universal resource to generate arbitrary tripartite pure states using SLOCC. For this purpose, one must look for a resource in larger systems such as many shared EPR pairs to extract the desired multipartite state. For example, there is a direct way of converting two EPR pairs into a three-qubit GHZ-type state [2], which then can be used to prepare approximate W state [3], In this conversion from GHZ to W state, there is a trade-off between the fidelity and success probability. Unit fidelity cannot be achieved with non-zero probability, which confinns that GHZ- and W-type states belong to distinct classes.

© 2009 IEEE

PDF Article
More Like This
Preparation and Local Manipulation of Photonic W States Using Expansion and Fusion Gates

Sahin Kaya Ozdemir, Toshiyuki Tashima, Takashi Yamamoto, Masato Koashi, and Nobuyuki Imoto
QThT2 Quantum Electronics and Laser Science Conference (CLEO:FS) 2011

Superadditivity of two quantum information resources

M. Nawareg, S. Muhammed, P. Horodecki, and M. Bourennane
EB_4_5 European Quantum Electronics Conference (EQEC) 2017

High-efficiency source of a three-photon W state and its full characterization using quantum state tomography

Takayoshi Kobayashi, Hideharu Mikami, Yongmin Li, and Kyosuke Fukuoka
IThF3 International Conference on Quantum Information (QIM) 2007

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.