Abstract

We describe a modification of a recently proposed unconventional OCT approach to 3D microvasculature imaging based on high-pass filtering of B-scans in the lateral direction. The B-scans are acquired in M-mode-like regime with highly overlapped A-scans. The goal of the described modification is to suppress non-fluid artifacts in the resultant microcirculation images. The modification is based on the amplitude normalization procedure of complex-valued OCT signal before subsequent processing. This allows one to efficiently suppress imaging degradation due to the influence of very bright spots/lines (e.g. from hairs on the surface) and retain images of real flows inside the tissue without any artificial cut-off of the surface signal, or application of pixel-intensity thresholds, or signal classification approaches.

© 2015 SPIE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription