Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Depth-resolved quantitative measurement of cerebral blood flow using broad-band near infrared spectroscopy and a two-layer head model

Not Accessible

Your library or personal account may give you access

Abstract

We propose an algorithm based on a two-layer optical model to quantify CBF from dynamic contrast-enhanced near-infrared data acquired with a two-channel broadband system. The key novel aspect of the algorithm is the ability to separate the contrast agent concentration, indocyanine green (ICG), in extracerebral (EC) tissue and cerebral cortex by representing the (EC) tissue as the top optical layer and the brain as the bottom optical layer. Experiments were conducted on a juvenile pig model. Broadband near-infrared spectra were acquired at source-detectors distances of 1 and 3 cm. The first step of the algorithm was to find the baseline optical properties of the layers by a multi-parameter wavelength-dependent data fit of a photon diffusion equation solution for a two-layer media. The second step was to use the baseline optical properties to separate the ICG concentration time course in brain from the ICG time course in EC tissue. The final step was to calculate CBF from the cerebral ICG time course. The resulting CBF measurements were in good agreement with concurrent measurements acquired by computed tomography, which a difference of 20%.

© 2011 OSA/SPIE

PDF Article
More Like This
Quantitative measurement of cerebral blood flow using broadband continuous wave near infrared spectroscopy

Hadi Zabihi Yeganeh, Vladislav Toronov, Jonathan T. Elliot, Mamadou Diop, Keith St. Lawrence, and Ting-Yim Lee
JM3A.3 Biomedical Optics (BIOMED) 2012

Quantification of Cerebral Blood Flow in the Adult using Near-Infrared Spectroscopy Assisted by Subject-Individualized Monte Carlo Modeling

Jonathan T. Elliott, Mamadou Diop, Kenneth M. Tichauer, Ting-Yim Lee, and Keith St. Lawrence
BWA1 Biomedical Optics (BIOMED) 2010

Quantitative Measurements of Cerebral Blood Flow Obtained with a Time-Resolved Near-Infrared Technique

Mamadou Diop, Kenneth Tichauer, Mark Migueis, Ting-Yim Lee, and Keith St. Lawrence
BSuD79 Biomedical Optics (BIOMED) 2010

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.