Abstract

We show an approach exploiting the capability of optical tweezers to trap and put in rotation bovine spermatozoa flowing into a microfluidic channel. At same time, digital holographic microscopy allows to image the cell in phase-contrast modality for each different angular position, during the rotation. From the collected information about the cell’s phase-contrast signature, it is possible to reconstruct the 3D shape of the cell and estimate its volume. The method can open new pathways for rapid measurement of in-vitro cells volume in microfluidic lab-on-a-chip platform, thus having access to the 3D structure of the object avoiding tomographic microscopy.

© 2014 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription