Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference
  • (Optica Publishing Group, 2017),
  • paper CA_5_5

Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2.1 μm

Not Accessible

Your library or personal account may give you access

Abstract

High power ultrafast laser sources at 2 μm are highly desirable as primary sources in many fields such as mid-IR generation, remote sensing, Lidar systems, and medical use. Ho:YAG is an excellent gain crystal for such kind of sources due to its low quantum defect, good crystal quality and broad emission bandwidth. To date, Ho:YAG has been utilized in q-switched and actively mode-locked systems [1,2]. Very recently passive mode locking has also been demonstrated using semiconductor saturable absorber mirrors (SESAMs) [3,4]. However, the output power and pulse duration were limited to only several hundred milliwatts and few picoseconds, respectively. Since the invention of thin disk technology, great progress has been made in power and energy scaling of thin disk lasers mode-locked by both SESAM and Kerr-lens mode locking (KLM) [5,6]. However, KLM shows great advantages compared to SESAM mode-locking in generating shorter pulses with high power due to its fast response time, broad bandwidth operation and higher damage threshold. Here we present a KLM Ho:YAG thin disk oscillator working at 2.1 μm for the first time. It delivers 220 fs pulses with average power up to 20 W, which is, to the best of our knowledge, the shortest pulse duration ever obtained in a Ho:YAG oscillator and highest average power of any mode locked ultrafast oscillator in 2 μm range.

© 2017 IEEE

PDF Article
More Like This
270 fs, 30-W-level Kerr-lens mode-locked Ho:YAG thin-disk oscillator at 2 μm

Jinwei Zhang, Ka Fai Mak, Sebastian Gröbmeyer, Dominik Bauer, Dirk Sutter, Vladimir Pervak, Ferenc Krausz, and Oleg Pronin
NTu3A.2 Nonlinear Optics (NLO) 2017

Generation of 220 fs, 20 W pulses at 2 μm from Kerr-lens mode-locked Ho:YAG thin-disk oscillator

Jinwei Zhang, Ka Fai Mak, Sebastian Gröbmeyer, Dominik Bauer, Dirk Sutter, Vladimir Pervak, Ferenc Krausz, and Oleg Pronin
SM1I.6 CLEO: Science and Innovations (CLEO:S&I) 2017

Towards Active Multipass Kerr-lens Mode-locked Yb:YAG Thin-disk Oscillators

Markus Poetzlberger, Jonathan Brons, Jinwei Zhang, Dominik Bauer, Dirk Sutter, Ferenc Krausz, and Oleg Pronin
CA_7_2 The European Conference on Lasers and Electro-Optics (CLEO/Europe) 2017

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.