Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • CLEO/Europe and EQEC 2011 Conference Digest
  • OSA Technical Digest (CD) (Optica Publishing Group, 2011),
  • paper CK_P22

Photonic graphene: Broken P T-symmetry, strain, and optical tachyons

Not Accessible

Your library or personal account may give you access

Abstract

Honeycomb photonic lattices [1] share not only many common features with electronic grapheme (a monolayer of carbon atoms arranged in a honeycomb geometry), but can be used to explore phenomena far beyond the original electronic system. Of particular interest are complex gain/loss systems, which, under special conditions, may exhibit complex, but PT-symmetric, Hamiltonians. PT-symmetric systems are characterized by a complex potential, which has neither parity symmetry nor time-reversal symmetry, but is nevertheless symmetric in the product of both [2]. Under these conditions, the eigenvalues of the Hamiltonian are real, in spite of the fact that the potential is complex [2]. Recently, such systems were introduced into the domain of optics [3]. Their simplest realization occurs for two coupled identical waveguides, one with gain and the other with loss, such that the real part of the refractive index is symmetric whereas the imaginary counterpart is anti-symmetric. This realization was recently demonstrated in experiments [4]. Here, we show that adding gain/loss to a regular photonic honeycomb lattice can never result in PT-symmetry. However, this unique system can support the formation of optical tachyons – a photonic version of hypothetical particles with imaginary mass and a group velocity exceeding the vacuum speed of light. Nevertheless, applying a strain to the honeycomb lattice may restore PT-symmetry, in particular in the most interesting region of the band structure: the Dirac regime.

© 2011 Optical Society of America

PDF Article
More Like This
Optical tachyons, broken P T-symmetry, and strain effects in photonic graphene

Alexander Szameit, Mikael C. Rechtsman, Omri Bahat-Treidel, and Mordechai Segev
QThD1 Quantum Electronics and Laser Science Conference (CLEO:FS) 2011

Magnetic Field Effects and Landau Solitons in Strained Photonic Graphene

Mikael C. Rechtsman, Alexander Szameit, and Mordechai Segev
QFF4 Quantum Electronics and Laser Science Conference (CLEO:FS) 2011

A Floquet Topological Phase Induced by PT-symmetry in 2D Photonic Lattices

Georgios G. Pyrialakos, Julius Beck, Matthias Heinrich, Mercedeh Khajavikhan, Alexander Szameit, and Demetrios N. Christodoulides
FM5B.2 CLEO: QELS_Fundamental Science (CLEO:FS) 2022

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.