Because of the ability to concentrate light into subwavelength dimensions, plasmonic nanostructures have become a new frontier of nano-photonics, with promising applications for energy transport and conversion. In this work, we experimentally measure the near field intensity distribution of light squeezed through a subwavelength plasmonic hole in a thin metal film. Both transmission coefficient and phase shift of an in-plane electric dipole moment, which is excited near the isolated subwavelength hole, are retrieved based on the interference model of a plane and spherical wave. Strong transmission enhancement is achieved through the subwavelength hole due to the surface plasmon resonance via a model which is not predicted by the classical theory. The opposite phases of the excited dipoles in the subwavelength dent and protrusion are observed.

© 2013 Optical Society of America

PDF Article


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription