Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Conference on Lasers and Electro-Optics/Pacific Rim 2007
  • (Optica Publishing Group, 2007),
  • paper PL_3

High Speed, Ultrahigh Resolution Optical Coherence Tomography

Not Accessible

Your library or personal account may give you access

Abstract

Optical coherence tomography (OCT) is an emerging imaging technology which can generate high resolution, cross-sectional images of materials and biological tissues. OCT is analogous to ultrasound imaging, except that it measures the echo time delay of backscattered or backreflected light. In biomedical applications, OCT functions as a type of "optical biopsy" enabling visualization of tissue pathology with resolutions approaching that of conventional biopsy and histology. However OCT has the advantage that imaging is performed in situ and in real time, without the need to remove and process a specimen. OCT uses many technologies from photonics and fiber optics, including femtosecond lasers, high speed CCDs and high speed frequency swept lasers. Recently there have been dramatic advances in OCT which enable ultrahigh resolution imaging on the micron scale using broadband femtosecond lasers. New detection techniques have been developed which measure echo time delays of light in the Fourier domain, enabling 10 to 100 times increases in imaging sensitivity or speed. These advances enable three dimensional imaging and visualization similar to that in MR imaging. OCT is rapidly becoming a standard clinical diagnostic in ophthalmology, where it enables imaging and measurement of retinal pathology with unprecedented resolutions. OCT is also being developed for many other applications ranging from cancer detection in endoscopy, to intravascular imaging in cardiology. This presentation will describe recent advances in OCT technology and applications.

© 2007 IEEE

PDF Article
More Like This
Biomedical Imaging and Optical Biopsy Using Optical Coherence Tomography

James G. Fujimoto
BSuA2 Biomedical Optics (BIOMED) 2010

Optical Coherence Tomography for Biomedical Imaging

James G. Fujimoto
SWC3 Frontiers in Optics (FiO) 2008

Ultrahigh resolution optical coherence tomography of human skin

S. Gasparoni, B. Povazay, B. Hermann, A. Unterhuber, H. Kittler, H. Sattmann, F. Róka, M. Binder, K. Bizheva, R. Leitgeb, H. Pehamberger, and W. Drexler
TuB3 European Conference on Biomedical Optics (ECBO) 2005

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.