Abstract

Excited state plays an important role in photoluminescence (PL) and electroluminescence (EL) properties of organic light-emitting materials. Charge-transfer (CT) state is beneficial to harvest triplet exciton utilization in fluorescent organic light-emitting diodes (FOLEDs) by efficient reverse intersystem crossing. However, the CT-dominated emissive state seriously decreases PL efficiency in such materials. Our strategy is to combine both locally-excited (LE) state and CT state into hybridized local and charge-transfer (HLCT) state, aiming at a balance between high PL efficiency and high exciton utilization. As a solution, a quasi-equivalent hybridization is obtained in TBPMCN, and its nondoped OLED exhibited a very high performance: a pure blue emission with a CIE (0.156, 0.159), a high EQE of 7.8% and a high exciton utilization of 97% without delayed component. Furthermore, the excited state properties were systematically investigated in donor-acceptor (D-A) system using time-dependent density functional theory (TDDFT). The hybridization and de-hybridization processes between LE and CT states were involved with an increasing distance between donor and acceptor. What is more, HLCT state composition can be finely modulated by D-A strength, linkage, etc. Using HLCT conception, we achieved high-efficiency blue, green, red and even NIR luminescent materials and their FOLED devices. In a word, the excited state modulation could be a practical method in designing low-cost, high-efficiency FOLED materials.

© 2017 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription