Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Holographic read - write projector of video images

Open Access Open Access

Abstract

We demonstrate two real-time, read-write holographic projectors of video images based on photorefractive materials. A photorefractive crystal holographically records multiple, angularly multiplexed 2D images. By sequentially reconstructing each pre-recorded image a holographic video is created. In first setup the 2D image of an LCD screen is holographicaly recorded in a photorefractive LiNbO3 crystal. In the second setup the Fourier transform of the LCD screen is recoded in the crystal. A detailed comparison of the two setups along with a number of videos is provided. The Fourier transform recording is superior in image quality compared to the direct image recording.

©2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Optics for a Read–Write Holographic Memory

W. C. Stewart and L. S. Cosentino
Appl. Opt. 9(10) 2271-2275 (1970)

Fixed three-dimensional holographic images

Clint Wood, Gregory J. Salamo, John Goff, Gary L. Wood, Richard J. Anderson, and David J. McGee
Appl. Opt. 41(32) 6796-6801 (2002)

Compact, integrated dynamic holographic memory with refreshed holograms

Jean-Jacques P. Drolet, Ernest Chuang, George Barbastathis, and Demetri Psaltis
Opt. Lett. 22(8) 552-554 (1997)

Supplementary Material (10)

Media 1: AVI (935 KB)     
Media 2: AVI (862 KB)     
Media 3: AVI (826 KB)     
Media 4: AVI (706 KB)     
Media 5: AVI (884 KB)     
Media 6: AVI (943 KB)     
Media 7: AVI (1788 KB)     
Media 8: AVI (1034 KB)     
Media 9: AVI (1030 KB)     
Media 10: AVI (485 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1a.
Fig. 1a. Direct image recording experimental setup. M1, M2 Mirrors, BS variable beamsplitter, λ/2 retardation plate, H Computer Generated Hologram (CGH), L1–L4 lenses, (fL1 =-100mm, fL2 =250mm, fL3 =200mm, fL4 =250mm), D diffuser, L5 photographic lens f=50mm, L6 phot. lens f=28mm, SF 8-pinhole spatial filter, Ch chopper, PRC photorefractive crystal LiNbO3:Fe. The object and reference beams are extraordinary polarized. The image can be projected to a CCD detector by properly adjusting lens L6. The inset shows a magnified 3D view of the combination of the 8-pinhole spatial filter and the chopper.
Fig. 1b.
Fig. 1b. Fourier transform recording setup. M1, M2 Mirrors, BS variable beamsplitter, R λ/2 retardation plate, H Computer Generated Hologram (CGH), L1–L4 lenses, (fL1 =-100mm, fL2 =250mm, fL3 =200mm, fL4 =250mm), L5 photographic lens f=50mm, L6 photographic lens f=58mm, L7 phot. lens f=78mm, L8 phot. lens f=58mm, L9 phot. lens f=28mm, SF 8 pinhole spatial filter, Ch chopper, PRC photorefractive crystal LiNbO3:Fe. The object and reference beams are extraordinary polarized.
Fig. 2a.
Fig. 2a. (935 Kb) Video presenting a rotating 2D propel recorded in the direct image recording setup (Figure 1a).
Fig. 2c.
Fig. 2c. 825 Kb) Video presenting a rotating 3D dodecahedron recorded in the direct image recording setup (Figure 1a).
Fig. 2e.
Fig. 2e. (844 Kb) Video presenting a set of two rotating 2D gears recorded in the direct image recording setup (Figure 1a).
Fig. 2b.
Fig. 2b. (862 Kb) Video presenting a rotating 2D propel recorded in the Fourier transform recording setup (Figure 1b).
Fig. 2d.
Fig. 2d. (706 Kb) Video presenting a rotating 3D dodecahedron recorded in the Fourier transform recording setup (Figure 1b).
Fig. 2f.
Fig. 2f. (943 Kb) Video presenting a set of two rotating 2D gears recorded in the Fourier transform recording setup (Figure 1b).
Figure 3.
Figure 3. (1.74 Mb) Video presenting a rotating 2D propel recorded in the Fourier transform recording setup (Figure 1b). The reconstruction speed is variable so stroboscopic effects are observed.
Figure 4a.
Figure 4a. (1 Mb) Video presenting a rotating 3D stellated dodecahedron recorded in the Fourier transform recording setup (Figure 1b).
Figure 4b.
Figure 4b. (1 Mb) Video presenting a rotating 3D complex structure recorded in the Fourier transform recording setup (Figure 1b).
Figure 4c.
Figure 4c. (485 Kb) Video presenting a rotating 3D lobe recorded in the Fourier transform recording setup (Figure 1b).
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved