Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nonlocal polymerization-driven diffusion-model-based examination of the scaling law for holographic data storage

Not Accessible

Your library or personal account may give you access

Abstract

For the first time to our knowledge, a detailed theoretical basis is provided for the well-known inverse-square scaling law of holographic diffraction, which states that replay diffraction efficiency η=Γ/M2, where M is the number of gratings stored and Γ is a constant system parameter. This law is shown to hold for photopolymer recording media governed by the predictions of the nonlocal polymerization-driven diffusion model. On the basis of the analysis, we (i) propose a media inverse scaling law, (ii) relate Γ to photopolymer material parameters and the hologram geometry and replay conditions, and (iii) comment on the form and validity of the diffraction efficiency inverse-square scaling law for higher-diffraction-efficiency gratings.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model

John T. Sheridan, Feidhlim T. O'Neill, and John V. Kelly
J. Opt. Soc. Am. B 21(8) 1443-1451 (2004)

Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model

John V. Kelly, Michael R. Gleeson, Ciara E. Close, Feidhlim T. O’ Neill, John T. Sheridan, Sergi Gallego, and Cristian Neipp
Opt. Express 13(18) 6990-7004 (2005)

Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions

John V. Kelly, Feidhlim T. O'Neill, John T. Sheridan, Cristian Neipp, Sergi Gallego, and Manuel Ortuno
J. Opt. Soc. Am. B 22(2) 407-416 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.