Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 38,
  • Issue 8,
  • pp. 2152-2157
  • (2020)

Accurate BER Estimation Scheme Based on K-Means Clustering Assisted Gaussian Approach for Arbitrary Modulation Format

Not Accessible

Your library or personal account may give you access

Abstract

We propose a novel bit error rate (BER) estimation scheme based on a k-means clustering algorithm assisted Gaussian approach (GA). This method can implement accurate BER estimation within a short symbol sequence and is applicable for arbitrary modulation formats. First, after carrier phase recovery (CPR), the k-means clustering algorithm is used to partition clusters and find the respective centroids of each cluster. The means and variances are calculated from the symbols of each cluster. Compared with the decision-directed method based on power normalization, our method can find more precise means and further obtain more accurate variances. Subsequently, with the accurate means and variances, the resultant probability density function (PDF) of each symbol under Gaussian assumption is integrated over the respective decision zone to calculate symbol error rate (SER). Finally, the general conversion factor from SER to BER is introduced by taking into account the coding information of adjacent symbols. Therefore, the accurate BER estimation is attributed to the more accurate statistical parameter calculation and general SER-to-BER conversion schemes. The proposed scheme is verified in 34 GBaud polarization division multiplexing (PDM)-QPSK/8-QAM/16-QAM experiments. Compared with error vector magnitude (EVM)-to-BER conversion and GA+ common approximation (CA) scheme, the better estimation accuracy in the BER range from 10−6–10−2 is achieved successfully with only 10000 symbols. More specifically, our method has a significant improvement in estimation accuracy for non-Gray-mapped signals under low optical signal-to-noise ratio (OSNR). The BER estimation error can be reduced from 60 to 14% with PDM-8-QAM signal considered when actual BER is around 10−3.

PDF Article
More Like This
Robust weighted K-means clustering algorithm for a probabilistic-shaped 64QAM coherent optical communication system

Xishuo Wang, Qi Zhang, Xiangjun Xin, Ran Gao, Qinghua Tian, Feng Tian, Chuxuan Wang, Xiaolong Pan, Yongjun Wang, and Leijing Yang
Opt. Express 27(26) 37601-37613 (2019)

Synthesis of a GS-16QAM signal for a simplified optical ISB system and direct detection with the K-means clustering algorithm

Jun Ming, Jiangnan Xiao, Dongyan Wu, Leilei Wang, Ye Zhou, and Li Zhao
Opt. Express 30(22) 39663-39678 (2022)

K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system

Junfeng Zhang, Wei Chen, Mingyi Gao, and Gangxiang Shen
Opt. Express 25(22) 27570-27580 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.