Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 29,
  • Issue 21,
  • pp. 3223-3229
  • (2011)

Impact of Channel Count and PMD on Polarization-Multiplexed QPSK Transmission

Not Accessible

Your library or personal account may give you access

Abstract

Through graphics-processing-unit-based simulations with different numbers of copropagating channels (1--81), the dependence of the nonlinear threshold on channel count, as well as on the fiber polarization mode dispersion (PMD) coefficient, is investigated for both dispersion-managed and DCM-free 40 and 100 Gb/s coherent-detected polarization-multiplexed quadrature phase-shift keying (CP-QPSK) transmission systems. Different fiber types including standard single-mode fiber (SSMF), large effective area fiber (LEAF), and truewave classic fiber (TWC) are considered and compared. Our investigations show that the required number of simulated copropagating channels to correctly simulate the nonlinear penalty caused by interchannel nonlinearities on CP-QSPK modulation is strongly dependent on the fiber type. The generally used assumption of around ten channels for simulating interchannel nonlinearities is only valid for the SSMF with relative low channel input power. For transmission links consisting of fiber types with low dispersion or high nonlinear coefficients, such as the LEAF or TWC, ten copropagating channels are clearly not sufficient. In dispersion-managed systems with DCMs, the required number of simulated copropagating channels is not only dependent on fiber types and data rates but also strongly on PMD present in the links. Our investigations have indicated that for transmission over fibers with very low PMD (this is the case of most new fibers), ten copropagating channels are not sufficient to correctly characterize the interchannel nonlinearities even for high-dispersion fiber types, such as the SSMF, and hence causes a clear underestimation of the nonlinearity penalty. Finally, synchronized and interleaved CP-QPSK is compared. We show that despite the depolarization effect of PMD, there are still some benefits of using interleaved RZ-CP-QPSK systems.

© 2011 IEEE

PDF Article
More Like This
Nonlinear signal-noise interactions in dispersion managed coherent PM-QPSK systems in the presence of PMD

Xiaogang Yi, Jian Wu, Yan Li, Wei Li, Xiaobin Hong, Hongxiang Guo, Yong Zuo, and Jintong Lin
Opt. Express 20(25) 27596-27602 (2012)

Influence of polarization state, baud rate and PMD on non-linear impairments in WDM systems with mixed PM (D)QPSK and OOK channels

Mohsan Niaz Chughtai, Marco Forzati, Jonas Mårtensson, and Danish Rafique
Opt. Express 20(7) 8155-8160 (2012)

Impact of nonlinear signal-noise interactions on symbol-aligned and -interleaved formats in dispersion managed coherent PM-QPSK systems

Xiaogang Yi, Yan Li, Jian Wu, Kun Xu, and Jintong Lin
Opt. Express 20(15) 17183-17191 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved